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On the Exploitation of Sensitivity Derivatives

for Improving Sampling Methods

Yanzhao Cao, ∗ M. Yousuff Hussaini † and Thomas A. Zang ‡

Many application codes, such as finite-element structural analyses and computa-

tional fluid dynamics codes, are capable of producing many sensitivity derivatives at

a small fraction of the cost of the underlying analysis. This paper describes a sim-

ple variance reduction method that exploits such inexpensive sensitivity derivatives

to increase the accuracy of sampling methods. Three examples, including a finite-

element structural analysis of an aircraft wing, are provided that illustrate an order

of magnitude improvement in accuracy for both Monte Carlo and stratified sampling

schemes.

Introduction

Sampling methods for evaluating moments and
distributions of random functions have been used
extensively, but relatively little attention has been
paid to utilizing sensitivity derivatives of the ran-
dom function to improve the efficiency of sampling
methods. (A sensitivity derivative is the derivative
of the dependent random function with respect to
one of the independent random variables.)

Recently, Cao, Hussaini and Zang1 formulated
a sampling method for stochastic optimal control
problems that exploits the sensitivity derivatives.
There appear to have been no previous attempts
to exploit derivative information in Monte Carlo
methods for uncertainty analysis. For example, this
possibility is not mentioned in the recent texts by
Fishman2 and Liu.3

A variety of engineering analyses are capable of
producing sensitivity derivatives at a small fraction
of the cost of the analysis itself. This is certainly
true of many applications of finite-element structural
analysis. For example, data in Storaasli, Nguyen,
Baddourah and Qin4 (Table 1, p. 350) indicate that
for a relatively small finite-element structural model
(16,000 DoF), a single derivative can be obtaining
in 7% of the time for an analysis. Since this rela-
tive time is inversely proportional to problem size,
the relative cost of a derivative drops below 1% of
the analysis time for 130,000 DoF. The recent devel-
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opment of efficient adjoint solvers for computational
fluid dynamics (CFD) codes indicates that aerody-
namic sensitivity derivatives can be obtained very
efficiently. As one example we cite the work of Carle,
Fagan and Green,5 who reported that they have ob-
tained 88 derivatives for Euler CFD at the cost of
10 analyses. As another, more dramatic example we
refer to the work of Sundaram, Agrawal and Hager,6

who have obtained 400 derivatives at the cost of 10
analyses for viscous, turbulent CFD. Thus, there are
important applications in which derivative informa-
tion, even for tens of parameters, can be obtained
at less cost than an analysis. The challenge is to de-
vise sampling methods which exploit this additional
inexpensive information to reduce the overall com-
putational cost.

On their optimal control problem application,
Cao, Hussaini and Zang (CHZ) demonstrated that,
compared with conventional Monte Carlo sampling,
exploiting the sensitivity derivatives produced an or-
der of magnitude increase in the efficiency of the
sampling method on a model problem with one
random variable. The present paper furnishes ad-
ditional numerical support for the benefits of the
use of sensitivity derivatives. In particular, we
demonstrate (1) that this improved efficiency is even
greater when the baseline sampling scheme is strati-
fied sampling; (2) that improved efficiency is realized
on a moderately complex, finite-element analysis of
an aircraft wing structure; and (3) that the improved
efficiency extends to problems with more than one
random variable. On the other hand, whereas CHZ’s
work was in the context of optimal control prob-
lems, our demonstrations are confined to simply the
estimation of first and second moments of random
functions.

The paper is organized as follows. In Section 2,
we summarize the relevant formulation of sensitiv-

1 of 8

American Institute of Aeronautics and Astronautics Paper 2003-1656



ity derivative-enhanced sampling (SDES) methods
from CHZ. In Section 3 we present the verification
of our Monte Carlo and stratified sampling proce-
dures on an analytical function of several variables.
In Section 4, we demonstrate SDES using stratified
sampling on the Burgers equation problem studied
by CHZ. Finally, in Section 5, we present results for
an aircraft wing structure.

Sensitivity Derivative-Enhanced

Sampling Framework

Consider a real-valued function y(ξ), where ξ is
a real-valued random variable with probability den-
sity function ρ(ξ). We assume that the sensitivity
derivatives of y with respect to ξ are available. Let
J(y) be a functional of y. The expected value of
J(y), denoted by E(J), is given by

E(J) =

∫

J(y(ξ))ρ(ξ)dξ . (1)

Let V (J) denote its variance

V (J) =

∫

(

J(y(ξ)) − E(J)
)2

ρ(ξ)dξ . (2)

We use ξ to denote the mean (or expected) value
of ξ. The most straightforward way to compute the
expected value of J is to use a Monte Carlo method.
The problem with the Monte Carlo method is its
slow convergence. It can easily take hundreds or
thousands of samples to obtain satisfactory approx-
imation to the moments.

In a Monte Carlo method, the approximation of
the integral (1) is given by

Ê(J) ≈ 1

N

N
∑

i=1

J(y(χi)), (3)

where χ1, χ2, · · · , χN is a sequence of samples of
ξ generated according to the density function ρ(ξ).
The convergence of (3) is, of course, guaranteed by
the large number theorem. But the approximation

error in (3) is proportional to V (J)√
N

. One naturally

looks for ways to reduce variance to improve conver-
gence. The current effort exploits the information
regarding the sensitivity of the function J(y(ξ)) with
respect to the stochastic parameter ξ to achieve vari-
ance reduction.

Let J1(ξ) be the linear Taylor expansion of J at
ξ, i.e.,

J1(ξ) = J(y(ξ)) + Jy(y(ξ))yξ(ξ)(ξ − ξ), (4)

where yξ is the sensitivity of y with respect to ξ.
Notice that

∫

(

J(y(ξ)) − J1(ξ)
)

ρ(ξ)dξ =

∫

J(y(ξ))ρ(ξ)dξ − J(y(ξ)).

This suggests the following Monte Carlo approxima-
tion of Ê(J):

Ê(J) ≈ J(y(ξ)) +
1

N

N
∑

i=1

(

J(y(χi)) − J1(χi)
)

. (5)

The variance of J(y(ξ)) − J1(ξ) is given by
∫

(

J(y(ξ)) − J(y(ξ)) − Jy(y(ξ))

−yξ(ξ)(ξ − ξ)
)2

ρ(ξ)dξ, (6)

where J(y(ξ)) is the mean of J(y(ξ)). In the follow-
ing theorem, we use the variance of ξ to estimate
the variance of J − J1. Without loss of generality,
we assume that ξ is a scalar random variable. CHZ
proved the following result, which is repeated here
for completeness.

Let m = max | d
dξJ(y(ξ))| and

M = max | d2

dξ2J(y(ξ))|. The following esti-
mate holds

V (J) ≤ 2m2V (ξ)

and

V (J − J1) ≤
M2

2

(

V 2(ξ) + E
(

(ξ − ξ)4
)

)

.

Proof: The proof of the first inequality is straight-
forward. We only provide a proof for the second
inequality. By the Taylor remainder formula there
exists ξ1 such that

J(y(φ)) − J(y(ξ)) = Jy(y(ξ))yξ(ξ)(φ − ξ)

+
1

2

d2

dξ2
J(y(ξ))|ξ=ξ1

(φ− ξ)2 .

Since ξ is the expectation of ξ, we have that

J(y(ξ)) − J(y(ξ)) =
∫

1

2

d2

dξ2
J(y(ξ))|ξ=ξ1

(φ− ξ)2ρ(φ)dφ.

Thus

|J(y(ξ)) − J(y(ξ))| ≤ (7)

M

2

∫

(φ− ξ)2ρ(φ)dφ =
M

2
V (ξ).
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Using the Tayor remainder formula, we get

|J(y(ξ)) − J(y(ξ)) − Jy(y(ξ))yξ(ξ)(ξ − ξ)|

≤ M

2
(ξ − ξ)2.

Combining (6), (7) and the above inequality yields

V (J − J1) =

∫

(

J(y(ξ)) − J(y(ξ))

−Jy(y(ξ))yξ(ξ)(ξ − ξ)

−(J(y(ξ)) − J(y(ξ))
)2

dξ

≤ 2

∫

(

J(y(ξ)) − J(y(ξ))

−Jy(y(ξ))yξ(ξ)(ξ − ξ)
)2

ρ(ξ)dξ

+2

∫

(

J(y(ξ)) − J(y(ξ))
)2

ρ(ξ)dξ

≤ 2

∫

M2

4
(ξ − ξ)4ρ(ξ)dξ +

M2

2
V 2(ξ)

=
M2

2

(

V 2(ξ) + E
(

(ξ − ξ)4
)

)

.

This completes the proof. These results extend to
functions of multiple random variables in obvious
fashion.

The foregoing analysis indicates that the SDES
method is effective when the variance of ξ is small.
In these examples, we focus on the expected value
and variance of y. In the former case,

J1(ξ) = y + yξ(ξ)(ξ − ξ) ,

and in the latter case,

J1(ξ) = y2 + 2yyξ(ξ)(ξ − ξ) .

Verification of Sampling Procedures

Two different sampling procedures are considered
in this work. One is the vanilla Monte Carlo method,
given by (3). The other is stratified sampling, which
we describe in the case of one random variable. Let
Φ(ξ) denote the cumulative distribution function of
the random variable ξ, i.e.,

Φ(ξ) =

∫ ξ

−∞
ρ(ζ)dζ . (8)

The function Φ is non-decreasing with range [0, 1].
The interval [0, 1] is divided into S strata, assumed
here for simplicity to be of equal length:

[ηs, ηs+1] s = 0, 1, . . . , S − 1 , (9)

where
ηs = s/S s = 0, 1, . . . , S . (10)

In the standard stratified sampling method, for each
s one choosesNS random samples, ψs

i , i = 1, . . . , NS ,
uniformly distributed in [ηs, ηs+1], and computes the
corresponding random samples in the variable ξ by
inverting the cumulative distribution function:

χs
i = Φ−1(ψs

i ) i = 1, . . . , NS . (11)

This procedure assures that the χs
i are distributed

according to the density function ρ(ξ). The expected
value of J is then approximated by

Ĵ ≈ 1

S NS

S−1
∑

s=0

NS
∑

i=1

J(y(χs
i )) . (12)

For the SDES version of stratified sampling, one first
computes the contribution to (12) from each stratum
by an application of (5). In particular,

Ĵ ≈ 1

S
J̃s(y) , (13)

where

J̃s(y) = J(y(ξs)) +
1

NS

NS
∑

i=1

(

J(y(χi)) − Js
1 (χi)

)

,

(14)
with

Js
1 (ξ) = J(y(ξs)) + Jy(y(ξs))yξ(ξs)(ξ − ξs) , (15)

where ξs is the mean value of ξ in the s-th stratum,
given by

ξs =

∫ ξs+1

ξs

ξρ(ξ)dξ
/

∫ ξs+1

ξs

ρ(ξ)dξ , (16)

where ξs is computed from the ηs from (11). Note
that for stratified sampling the SDES method makes
more use of sensitivity information than for the
Monte Carlo method, i.e., S sensitivity derivatives
are used in the former case and only one in the lat-
ter. For d random variables the SDES stratified
sampling method uses Sd sets of sensitivity deriva-
tives, whereas the SDES Monte Carlo method still
just uses a single set of sensitivity derivatives. (A set
of sensitivity derivatives consists of the d derivatives
of y with respect to the d random variables.)

In order to verify our procedures for Monte Carlo
sampling, stratified sampling, and their sensitiv-
ity derivative-enhanced variants, we have conducted
tests on the simple function of d random variables

y(ξ) =
d

∑

j=1

ξj (17)
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We treat the d random variables as independent. In
one test case their one-dimensional density function
is the Gaussian

ρ(ξ) =

d
∏

j=1

1√
2πσ

e−(ξj−ξj)
2/2σ2

. (18)

Here,

y = d

y2 = d2 + dσ2 . (19)

The numerator in the formula (16) for the mean val-
ues of ξ in each strata, ξs, are evaluated analytically,
and the denominator is computed with the aid of an
IMSL routine for the cumulative distribution func-
tion for the standard normal distribution. We use
ξi = 1 and σi = 0.20 for all variables in this model
problem example.

In the other test case the density function is the
uniform distribution

ρ(ξ) =

{

1 if ξ1, . . . , ξd ∈ [0.5, 1.5]

0 otherwise ,
(20)

for which

y = d

y2 = d2 + d/12 . (21)

As expected for this linear test function, the SDES
results for the estimate of the first moment, E(y),
are exact. Indeed, the numerical results for all test
cases demonstrate this to the full 14-bit precision
of the computations. The numerical results for the
estimates of the second moment (variance), V (y),
are provided in detail in Table 1 (for the Gaussian
distribution) and Table 2 (for the uniform distri-
bution). Demonstrations of the effectiveness of the
SDES approach are provided for both Monte Carlo
(MC) sampling and stratified sampling with 4 strata
(S = 4). The column labeled N gives the total num-
ber of random samples. (The number of samples in
each stratum is NS = N/Sd.) The columns labeled
“ratio” give the absolute value of the ratio between
the baseline sampling scheme error, using the ex-
act results from (19) or (21), and those of its SDES
variant. The average ratios in the legend are the
geometric means of the individual results. The ra-
tio is cut off at 1, 000 to avoid undue influence from
peculiar cases. All computations in this paper were
performed in 64-bit arithmetic on a Macintosh G4
with dual 1 GHz. processors.

For the case of 1 random variable, there are
roughly 5-fold and 10-fold improvements in accu-
racy on the variance from the SDES approach for the

Table 1 SDES improvement ratios for second

moment estimates of the model problem: Gaus-

sian distribution

1 variable 4 variables
N MC S = 4 MC S = 4
8 1.71 8.1 592.66 —

16 0.54 6.87 7.16 —
32 1 2.7 24.95 —
64 2.64 0.28 2.09 —

128 2.85 8.47 23.55 —
256 1.25 2.69 2.81 95.7
512 197.62 376.77 6.18 14.19

1024 3.07 16.24 3.84 69.72
2048 1.08 11.82 23.98 38.26
4096 2.3 0.88 24.34 30.71
8192 1000 23.01 32.6 9.15

16384 5.1 23.46 32.01 35.68
32768 8.26 10.62 35.2 618.63
65536 5.76 119.61 6.53 12.97

131072 14.57 10.44 2.1 6.99
262144 — — — 123.6
524288 — — — 38.22

mean 5.14 9.47 13.61 38.19

Table 2 SDES improvement ratios for second

moment estimates of the model problem: uni-

form distribution

1 variable 4 variables
N MC S = 4 MC S = 4
8 3.15 14.91 30.86 —

16 0.54 0.61 4.63 —
32 0.83 0.96 166.78 —
64 3.2 26.32 4.46 —

128 3.67 16.58 15.4 —
256 2.8 13.42 6.73 30.81
512 151.14 564.02 5.54 12.47

1024 7.87 50.55 1.21 239.58
2048 1.62 12.39 19.69 45.92
4096 3.34 0.75 16.42 46.29
8192 65.04 375.96 13.79 45.5

16384 33.63 204.5 166.58 87.92
32768 3.75 17.68 28.49 70.82
65536 17.23 74.33 4.42 124.16

131072 93.22 200.12 0.91 101.66
262144 — — — 52.38
524288 — — — 34.72

mean 6.91 23.04 11.30 57.37

4 of 8

American Institute of Aeronautics and Astronautics Paper 2003-1656



Monte Carlo and stratified sampling schemes (with 4
strata), respectively. For the case of 4 random vari-
ables, the improvements in accuracy are more than
twice as great. However, since there are 256 strata
in this case, the cost of the sensitivity derivatives
is somewhat greater, but for, say, the N = 8192
case in Table 1, there are 256 evaluations of the
function plus its sensitivity derivatives and 256× 32
simple function evaluations. The cost of the sen-
sitivity derivatives is a negligible component of the
total cost.

Demonstration on a Solution of

Burgers Equation

CHZ’s main example was based on the generalized
steady-state Burgers equation,7

∂f

∂x
=

∂

∂x

(

ν
∂y

∂x

)

for x ∈ (−1

2
,
1

2
)

f(y) =
1

2
y(1 − y)

y(−1

2
) =

1

2

(

1 + tanh(
−1

8ν
)
)

y(
1

2
) =

1

2

(

1 + tanh(
1

8ν
)
)

(22)

This equation has the exact solution

y(x; ν) =
1

2

(

1 + tanh(
x

4ν
)
)

(23)

The parameter ν (viscosity) is treated as a ran-
dom variable. As a result, the solution y = y(x; ν)
of Burgers equation is also a random function.
Whereas CHZ considered this problem in the con-
text of optimal control, here we confine ourselves to
just the estimation of the first and second moments.

We again consider both a Gaussian distribution
and a uniform distribution. To conform to the
cases from CHZ, the parameters of this Gaussian
are ν = 2.0 and σ = 0.1, with the Gaussian cut-off
below ν = 0.1 and above ν = 3.9. For this reason
we use a quadrature formula (Simpson’s rule with
100 intervals) to evaluate the integrals in (16). The
uniform distribution case has the probability density
function

ρ(ξ) =

{

1 if ξ ∈ [0.1, 0.3]

0 otherwise ,
(24)

We revisit the example here to illustrate the im-
provement that the SDES method provides over the
baseline stratified sampling scheme. We include con-
ventional Monte Carlo (MC) for reference. Our
figure of merit is the root mean square (RMS) error

1/√ N

MC

 S=4

SDES MC

SDES S=4

N

Error

10
-3

10
-5

10
-4

10
-7

10
-6

10
1

10
4

10
3

10
3

Fig. 1 Errors in the second moment estimates

for the Burgers problem: Gaussian distribution

N

Error

10
-2

10
-4

10
-3

10
-6

10
-5

10
1

10
4

10
3

10
3

MC

 S=4

SDES MC

SDES S=4

1/√ N

Fig. 2 Errors in the second moment estimates

for the Burgers problem: uniform distribution

(in x) of the approximation of the second moment
of y(x; ν):

E(y2(x)) =

∫

y2(x; ν)ρ(ν)dν .

The “exact” value of the second moment, as well as
the root mean square errors, are evaluated by nu-
merical quadrature. (In our numerical examples, we
use Simpson’s rule with 100 intervals to compute
the “exact” values of the second moments at each
x and 40 intervals to compute the RMS errors over
x.) Moreover, in order to reduce the statistical fluc-
tuations in this quantity, we average this error over
20 independent computations for each value of N ,
the number of random samples of ν. Figures 1 and
2 illustrate the errors as a function of N for Monte
Carlo and for stratified sampling with S = 4, both
with and without the SDES procedure. The heavy
solid line illustrates 1/

√
N decay. The results in-
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Table 3 SDES improvement ratios for second

moment estimates of the Burgers problem: Gaus-

sian distribution

N MC ratio S = 4 ratio S = 8 ratio
8 14.33 25.53 28.72

16 14.41 23.55 28.94
32 12.95 21.24 22.34
64 12.67 21.19 23.29

128 14.63 22.53 23.68
256 12.98 21.22 22.68
512 13.09 19.98 21.91

1024 12.42 21.05 22.48
2024 13.23 20.11 22.88
4048 13.89 20.65 23.02
8192 14.88 22.36 23.59

16384 13.97 21.06 23.75
mean 13.60 21.66 23.84

Table 4 SDES improvement ratios for second

moment estimates of the Burgers problem: uni-

form distribution

N MC ratio S = 4 ratio S = 8 ratio
8 4.23 15.18 29.59

16 4.27 16.05 31.91
32 4.06 15.16 31.13
64 3.86 13.40 27.22

128 4.02 16.48 32.49
256 4.36 15.44 31.03
512 3.90 13.15 25.54

1024 3.50 13.42 25.75
2024 3.63 13.19 25.63
4048 3.82 15.18 30.42
8192 4.12 13.63 26.94

16384 4.17 13.81 26.44
mean 3.99 14.46 28.56

dicate that (1) the errors of all methods decay at
the expected 1/

√
N rate; (2) the stratified sampling

methods afford a significant improvement over con-
ventional Monte Carlo; and (3) the SDES approach
achieves an order of magnitude reduction in the er-
ror. Tables 3 and 4 document further the final point.
They report the ratio of the RMS errors for the
baseline schemes to the RMS error for their SDES
counterparts. The mean values of the ratio in the
bottom row of the tables are the geometric means
of the individual values. The corresponding results
for the RMS error in the first moments (not shown
here) give ratios that are about 10% greater than
those for the second moment.

Aircraft Wing Structure Application

The final numerical example is for a structural
analysis problem using finite-element analysis. The
specific problem is taken from the work of Gum-
bert, Hou and Newman8 (GHN). The tapezoidal-
planform, semispan wing is illustrated in Figure 3.
The wing is divided into 6 zones, marked by the
different colors in the figure, with zone 1 near the
wing root. The airfoil sections vary linearly from a
NACA 0012 section at the root to a NACA 0008 sec-
tion at the tip.The finite-element model consists of
583 nodes, with 2,141 constant-strain triangle (CST)
elements and 1,110 truss elements. Linear elasticity
is assumed. We adopt the same grouping of struc-
tural thicknesses as used by GHN. In the case of the
CST elements, which are all that are considered in
the present work, there are 3 parameters for each
zone. Whereas, for GHN, these parameters were de-
sign variables, for us they are the random variables.
These parameters are multiplicative factors for the
baseline values of the element thicknesses. For ex-
ample, variable 1 is the thickness multiple for the
skin elements in zone 1, variable 2 is the thickness
multiple for the web elements of the ribs in zone
1, and variable 3 is the thickness multiple for the
web elements of the spars in zone 1, variable 4 is
the thickness multiple for the skin elements in zone
2, etc. These scaling parameters are denoted by
ξ= (ξ1, . . . , ξd), where d denotes the number of pa-
rameters used in the particular case. The output
functional of the analysis, y(ξ), is the compliance,
which is the work done by the aerodynamic pressure
to deflect the structure. It is given by the integral
over the wing of the aerodynamic pressures times
the structural displacements. The wing leading edge
has a 9.46◦ sweep, a root of 20 ft. and a span of
60 ft. The trailing edge is unswept. The pressures

Zone 1

Zone 2

Zone 3
Zone 4

Zone 5

Zone 6

Fig. 3 Aircraft wing structural model
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were based on a static aeroelastic computation com-
putation (using Euler CFD and the finite-element
structural analysis) of the flow past the rigid wing
at a freestream Mach number of 0.80 and an angle-
of-attack of 1◦. The baseline values of the first 4
parameters are 0.188 in, 0.0375 in., 0.1200 in. and
0.125 in. The compliance is 213285 lbs.-in., and the
sensitivities of the compliance with respect to these 4
parameters are -396777, -1040, -591496 and -498708
lbs.-in./in., respectively. The second variable (the
thickness of the web of the rib in zone 1 contributes
relatively little to the compliance. This is readily
understandable on physical grounds as most of the
effect of the aerodynamic load is felt by the spars
and the skin.

The finite-element code is described by Hou,
Arunkumar and Tiwari.9 It was developed under
contract to NASA Langley Research Center to en-
able basic research on simultaneous, coupled aero-
structural optimization using first- and second-order
sensitivity derivatives of both sizing and shape vari-
ables. (See GHN and their earlier papers for the
optimization applications.) Gumbert, Newman and
Hou10 have recently used this code for uncertainty
analysis applications as well.

Numerical examples for this problem are given for
both a uniform distribution of the scaling parameter
ξ on [0.5, 1.5] and a Gaussian distribution with unit
mean and a standard deviation of 0.20. Since a sin-
gle structural analysis for this problem takes roughly
1/5 sec. of CPU time, the accuracy of the ”exact”
solution for the second moment of the compliance is
limited. We used the result for a stratified sampling
computation with 4 strata and a total of 65536 sam-
ples as the “exact” value. For the 1 variable cases we
estimate that this result is accurate to 1 part in 107

for the uniform distribution results and 1 part in 106

for the Gaussian distribution results. The accuracy
for the estimates of the “exact” second moments for
the 4 variable cases are roughly 1 order of magnitude
worse.

Tables 5 and 6 give the results for the Gaussian
and uniform distributions, respectively, in terms of
the ratio of the estimated errors from the conven-
tional sampling computations to those of their SDES
counterparts. Cases are included for both 1 and 4
random variables. Certainly, there is a very substan-
tial gain produced by the SDES method for the 1
variable case. The improvement is not as dramatic
for the 4 variable cases, although still significant.
More analysis is required to understand why the
SDES improvements for these 4-variable cases are
not as great as those for the model problem.

Table 5 SDES improvement ratios for second

moment estimates of the aircraft wing structure

problem: Gaussian distribution

1 variable 4 variables
N MC S = 4 MC S = 4
8 13.21 44.51 1.08 —

16 3.07 12.79 0.99 —
32 9.94 29.89 5.91 —
64 17.45 15.55 4.23 —

128 19.45 62.05 3.85 —
256 0.06 5.07 2.97 —
512 798.21 598.69 1.92 2.83

1024 8.12 38.57 12.30 0.44
2048 10.12 44.99 2.01 2.39
4096 4.88 3.98 14.04 4.36
8192 1000.00 47.83 6.51 4.23

16384 26.84 — 2.79 148.37
32768 — — — 0.88
mean 14.27 22.46 3.53 3.56

Table 6 SDES improvement ratios for second

moment estimates of the aircraft wing structure

problem: uniform distribution

1 variable 4 variables
N MC S = 4 MC S = 4
8 19.63 106.38 0.90 —

16 3.05 10.51 5.50 —
32 9.20 41.48 6.52 —
64 19.08 67.63 1.92 —

128 22.79 105.96 2.37 —
256 6.88 23.20 17.47 —
512 1000.00 361.64 2.27 3.80

1024 26.10 70.98 9.54 2.37
2024 12.94 50.55 5.61 3.81
4048 8.87 51.44 12.08 13.91
8192 346.19 347.98 4.60 2.20

16384 81.83 369.27 2.15 15.16
32768 12.03 37.86 9.78 30.64
65536 81.15 — 2.72 8.13

131072 — — — 41.23
mean 27.44 55.30 4.39 8.18
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Concluding Remarks

In conclusion, we have furnished numerical re-
sults attesting to the advantage of exploiting sen-
sitivity derivatives in sampling schemes. The ex-
amples range from an analytic model problems to
full finite-element structural analyses. For a fixed
number of samples there is typically an order of
magnitude reduction in the error achieved by the
sensitivity derivative-enhanced sampling approach.
Equivalently, SDES computations require two or-
ders of magnitude fewer samples to achieve the same
accuracy in the moments compared with baseline
Monte Carlo and stratified sampling schemes. The
overhead for the extra sensitivity derivative calcula-
tions is less than 5%, even for the structural analysis
example.

The near-term next steps in this project include:
(1) studying the 4-variable structural analysis ex-
amples more thoroughly in order to obtain definitive
values for the SDES improvement; (2) evaluating the
impact of SDES on Latin hypercube sampling in or-
der to handle a larger set of random variables in
the structural problem; and (3) extending the SDES
to exploit the semi-analytic second-order sensitivity
derivatives available from some codes. For example,
the particular finite-element code used for this work
was chosen because it has a second-order sensitiv-
ity capability.9 We should note that there has been
some promising work on obtaining second-order sen-
sitivity derivatives efficiently from CFD codes.11, 12

In the present work, we have only made very mi-
nor use of derivative information, and have obtained
a significant speed-up over two conventional sam-
pling methods. This suggests that more attention
should be devoted to exploiting relatively inexpen-
sive sensitivity derivatives in traditional sampling
methods. The long-term research challenge is to
make even better use of derivative information in
otherwise conventional sampling methods.
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